Quantum nanoscope
A collaborative work published in Science shows how electrons surf the waves of light on graphene.
Researchers have studied how light can be used to “see” the quantum nature of an electronic material. They managed to do that by capturing light in a net of carbon atoms and slowing down light that it moves almost as slow as the electrons in the graphene. Then, something special happens: electrons and light start to move in concert, unveiling their quantum nature at such large scale that it could be observed with a special type of microscope.
The experiments were performed with ultra-high quality graphene. To excite and image the ultra-slow ripples of light in the graphene (also called plasmons), the researchers used a special antenna for light that scans over the surface at a distance of a few nanometers. With this near-field nanoscope they saw that the light ripples on the graphene moved more than 300 times slower than light, and dramatically different from what is expected from classical physics laws.
The work, authored by researchers from nanoGUNE, ICFO, IIT, and Columbia University, has been published in Science. In reference to the accomplished experiments, ICREA Prof. at ICFO Frank Koppens comments: “Usually it is very difficult to probe the quantum world, and to do so it requires ultra-low temperatures; here we could just “see” it with light and even at room temperature”.
This technique paves now the way for exploring many new types of quantum materials, including superconductors where electricity can flow without energy consumption, or topological materials that allow for quantum information processing with topological qubits. In addition, Ikerbasque Prof. at nanoGUNE Rainer Hillenbrand states that “this could just be the beginning of a new era of near field nanoscopy”.
Prof. Polini, from IIT, adds that “this discovery may eventually lead to understanding in a truly microscopic fashion complex quantum phenomena that occur when matter is subject to ultra-low temperatures and very high magnetic fields, like the fractional quantum Hall effect”.
This research has been partially supported by the European Research Council, the European Graphene Flagship, the Government of Catalonia, Fundació Cellex and the Severo Ochoa Excellence program of the Government of Spain.
M. B. Lundeberg, Y. Gao, R. Asgari, C. Tan, B. Van Duppen, M. Autore, P. Alonso-González, A. Woessner, K. Watanabe, T. Taniguchi, R. Hillenbrand, J. Hone, M. Polini, F. H. L. Koppens
Science (2017) [DOI: 10.1126/science.aan2735]
Tuning quantum nonlocal effects in graphene plasmonics